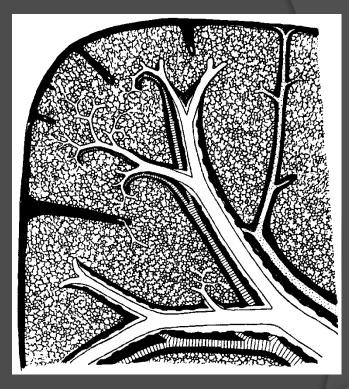

PULMONARY CONSIDERATIONS AND COMPLICATIONS IN NEUROSURGERY

Presented by Harshit Mishra

Moderators Dr. Manmohan Singh Dr. G.D.Satyarthee

Anatomy


- Tracheobronchial tree
 - Dependent parts
 - Posterior and Superior Segments of Right and Left Lower lobes
 - Posterior Segment of Right Upper Lobe
 - Right main bronchus in direct alignment with trachea

Anatomy

Vascular Supply

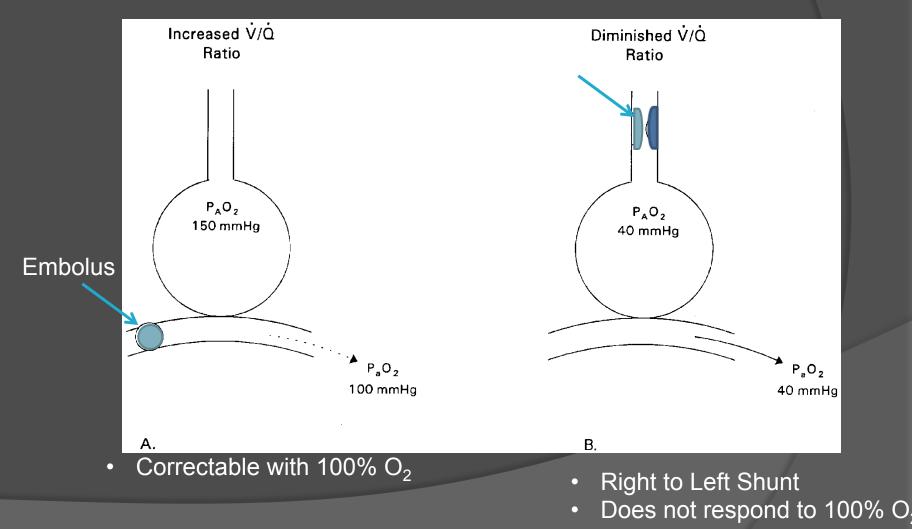
- Pulmonary circulation
 - Low pressure (25/8 mm Hg)
 - Filter for micro emboli
- Bronchial circulation
 - Small normal physiological shunt
- Dual circulation reduces incidence of infarction

Anatomy

Innervation

Afferent

- Myelinated A fibers provide stretch feedback
- Unmyelinated C fibers respond to chemical stimulation (e.g. bradykinnin)
- Efferent
 - Sympathetic vasoconstriction and mucus secretion
 - Parasympathetic -- bronchoconstriction and mucus secretion


Oxygen transfer is perfusion (Q) limited

 Normal alveolar-arterial PO₂ gradient = 10 mmHg [150 – (PaCO₂ /0.8)- PaO₂]

CO₂ transfer is Ventilation (V) dependent

- V/Q mismatch results in
 - ↓ed PaO₂
 - ↑ed PaCO₂ may be corrected by hyperventilation

Ventilation Perfusion Mismatch

- Dead space -to -Tidal Volume (Vd/Vt) ratio = (PaCO₂ – PECO₂)/PaCO₂ = 0.2 - 0.3
 - \cdot ed Vd/Vt indicates ventilator dependence
 - Tracheostomy reduces Vd/Vt
- Oxygen delivery optimized by maintaining
 - PaO₂ 90 100 mmHg
 - Hb >10g/dL

- Control of Breathing
 - Rhythm and Pattern Generator
 - DRG and VRG located in medulla
 - Pneumotaxic center
 - Pons
 - Inspiratory cut off
 - Chemoreceptors
 - Central (near medulla) : CSF pH and PaCO₂
 - Peripheral (Carotid and aortic bodies) : O₂ delivery
 - Mechanoreceptors (feedback and irritant)

- Sreathing Patterns:
- Central Alveolar Hypoventilation
 - Slow and shallow; regular
 - Insult to brainstem
- Ataxic Respiration:
 - Slow and irregular
 - Injury to medulla/caudal pons

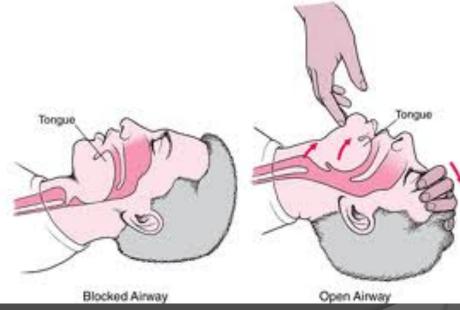
• BREATHING PATTERNS:

- Apneustic Respiration:
 - Extended inspiration
 - Injury to pons
- Central Neurogenic Hyperventilation
 - Rapid and regular
 - Injury to rostral pons /midbrain
 - Raised ICP

O BREATHING PATTERNS:

- Cheyne Stokes Respiration
 - Regularly irregular
 - Cerebral /diencephalic dysfunction
- Others
 - Kussmaul respiration (acidosis)
 - Central Hypoventilation due to drug over dosage

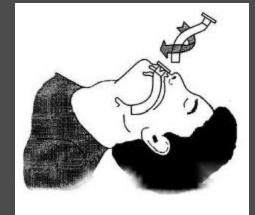
Excellence in Pulmonary Care

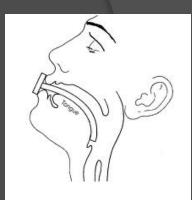

- Maintenance of airway
- Adequate alveolar ventilation
- Appropriate oxygenation

AIRWAY MAINTENANCE

- Intact Gag reflex does not confirm the ability of the patient to ---
 - Cough
 - Sigh
 - Clear secretions effectively
- Head and Upper Spine injury/ Unconscious patients have risk of:-
 - Aspiration
 - Atelectasis
 - Hypoventilation

AIRWAY MAINTENANCE


Tongue fall is a common problem in supine patients
 "Sniffing position" is a temporizing measure



AIRWAY MAINTENANCE

- Airway keeps tongue anterior
 - May stimulate gag
- Nasopharyngeal airway
 - Bypasses tongue mechanism
 - Adequate size to be used

(e.g. Size 34 or more for 70 kg adult)

INDICATIONS:

- Airway protection
 - CNS Depression
 - Risk of Aspiration
 - Procedures (e.g. bronchoscopy)
 - Acute Massive Hemoptysis
- Respiratory acidosis (PaCO₂ > 60 m Hg)
 - CNS depression
 - Increased work of breathing (RR > 40 or < 6/min)

- Hypoxia refractory to supplemental oxygen (PaO₂ <55 m Hg)
 - ARDS
 - Severe pneumonia
- Intentional Hyperventilation
 - Reduction of cerebral edema
 - Reduction of ICP

* Pontoppidan H, Geffin B, Lowenstein E. Acute respiratory failure in the adult. N Engl J Med. 1972 Oct 12;287(15):743-52.

- Pre intubation 100% O₂ mask ventilation for 3-5 mins
- Size of endotracheal tube :
 - \geq 8 mm for adult male; 7.5 mm for female
 - Selection of appropriate size to avoid pressure necrosis
- Route of intubation
 - Oral
 - Emergency
 - Allows Larger tube work of breathing reduced
 - Nasal
 - Cervical spine injuries
 - Contraindicated in base of skull injuries

- Distal end of tube should be 20 -22 cm from teeth.
- Confirmation of tube position
 - Prominent breath sounds over both lung fields
 - Rise in Oxygen saturation
 - Condensation mist on inner tube lining
- Ouff pressure ≤25 mm Hg (smaller tubes require higher cuff pressure).

Complications

- Acute
 - Oral/nasal trauma
 - Vocal cord tear
 - Tracheal perforation (pneumothorax/ pneumomediastinum)
 - Accidental intubation of right main bronchus
 - Left lung collapse

- Long term
 - Tube block
 - Cuff site necrosis
 - Hoarseness
 - Tracheal stenosis
 - Tracheomalacia
 - Tracheal colonization (acinetobacter , pseudomonas)
 - Cuff leak

• Extubation

- Patient Weaned off from ventilation
- Purpose of intubation achieved
- Preferably in morning
- Stop Sedation/ tube feeding
- Prior chest physiotherapy; Upright position
- Suctioning of endotracheal /pharyngeal secretions before deflation of balloon
- O₂ by mask/nasal prong after extubation
- Observation for 6 24 hrs

AIRWAY MAINTENANCE Tracheostomy

Indications :

- 1. Prolonged translaryngeal intubation (to prevent airway damage)
- 2. Frequent suctioning and secretion removal (to allow easy access to the lower airway)
- 3. Prolonged mechanical ventilation or oxygenation support (to provide a stable airway)

AIRWAY MAINTENANCE Tracheostomy

ADVATAGES:

- Improved patient comfort
- Less need for sedation
- Lower work of breathing
- Improved patient safety
- Improved oral hygiene
- Oral intake more likely
- Earlier ability to speak

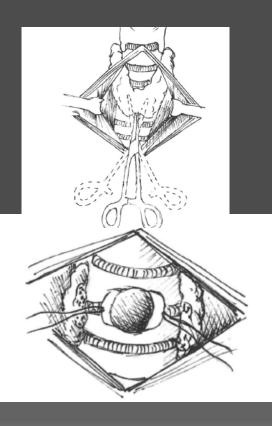
- Better long-term laryngeal function
- Faster weaning from mechanical Ventilation
- Lower risk of ventilatorassociated pneumonia
- Lower mortality
- Shorter intensive care unit and hospital stay

AIRWAY MAINTENANCE Tracheostomy : When ?

- Tracheostomy to be performed in 3-5 days in patients expected to require prolonged ventilation (~ 7 – 14 days)
 - Severe head injury
 - Brainstem dysfunction
 - Low GCS
 - Spinal cord injury at or above C4
- Most of laryngeal damage occurs in first 3 days of translaryngeal intubation
 Early tracheostomy promotes healing

Durbin CG Jr. Tracheostomy: why, when, and how? Respir Care. 2010 Aug;55(8):1056-68

Durbin CG Jr et al . Should tracheostomy be performed as early as 72 hours in patients requiring prolonged mechanical ventilation? Respir Care. 2010 Jan;55(1):76-87

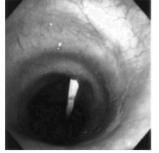

AIRWAY MAINTENANCE Tracheostomy

Senefits of early tracheostomy

- Improved patient comfort and safety
- Faster weaning - shorter ICU/Hospital stay
- Reduced incidence of VAP
- Intubation continued for longer in children
 - Concern for growing airway
 - Consequences of prolonged intubation are less severe

AIRWAY MAINTENANCE Tracheostomy : How?

- - At the level of 2nd 3rd tracheal rings



Open Surgical • Percutaneous Dilation Technique

• Ultrasound / Fibreoptic Bronchoscopy for precision

AIRWAY MAINTENANCE Tracheostomy : How?

Open Surgical

- Lesser risk of false passage
- Lesser problems in decannulation / obstruction

- Percutaneous
 Dilation Technique
 (PDT)
 - Reduced procedure time
 - Reduced wound infection
 - Convenience
 - Better scarring
 - Lesser chances of major bleed

Durbin CG Jr. Tracheostomy: why, when, and how? Respir Care. 2010 Aug;55(8): 1056-68

AIRWAY MAINTENANCE Tracheostomy : How?

Country	Routine use of Percutaneous Tracheostomy Technique (%)
France	21
Germany	86
Netherlands	62
Spain	72
Switzerland	57
UK	97

Durbin CG Jr. Tracheostomy: why, when, and how? Respir Care. 2010 Aug;55(8): 1056-68

AIRWAY MAINTENANCE Tracheostomy

Early

- Bleeding
- Desaturation during procedure
- Hypotension
- Subcutaneous emphysema (2.2%)
- Aspiration pneumonia
- Pneumothorax/ pneumomediastinum
- Accidental decannulation (4.4%)

Complications

Delayed

- Tracheal stenosis
- Infection
- Tracheomalacia
- Tracheo brachiocephalic fistula
- Tube obstruction
- Tube impaction

AIRWAY MAINTENANCE Tracheostomy - Decannulation

Protocol criteria for decannulation attempt

- Absence of distress and normal ABG for 5days after prolonged ventilation
- Clinically stable
 - Hemodynamic stability
 - Absence of fever/sepsis
 - $PaCO_2 < 60 \text{ mm Hg}$
- Endoscopy to rule out > 30% stenosis
- Absence of delirium
- Adequate gag/swallowing
- Patient able to expectorate on request
- Maximum expiratory pressure \geq 40 mm Hg

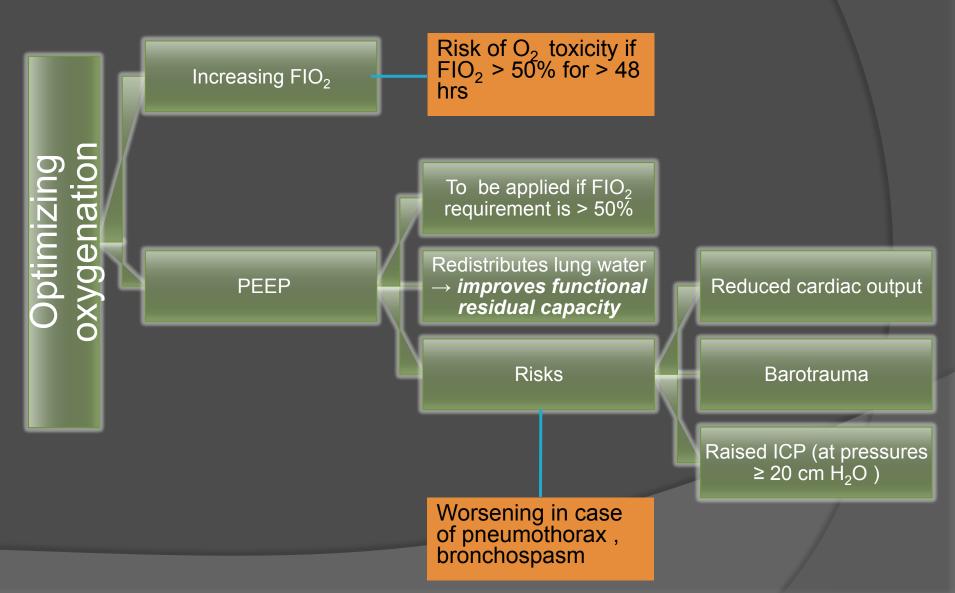
* Ceriana et al. Weaning from tracheotomy in long-term mechanically ventilated patients: feasibility of a decisional flowchart and clinical outcome. Intensive Care Med 2003;29(5):845–848.

AIRWAY MAINTENANCE Tracheostomy - Decannulation

Method

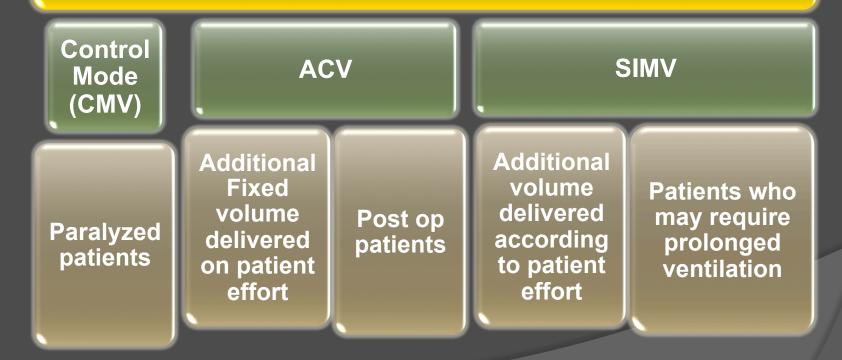
- Gradually downsize the tube to ≤ 6mm with cuff deflated
- Partial corking followed by full corking of metallic/portex tube (cuff deflated)
- Observation for at least 24 hrs
- If pH > 7.35 and < 5% PaCO₂ increase then decannulate

* Ceriana et al. Weaning from tracheotomy in long-term mechanically ventilated patients: feasibility of a decisional flowchart and clinical outcome. Intensive Care Med 2003;29(5):845–848.

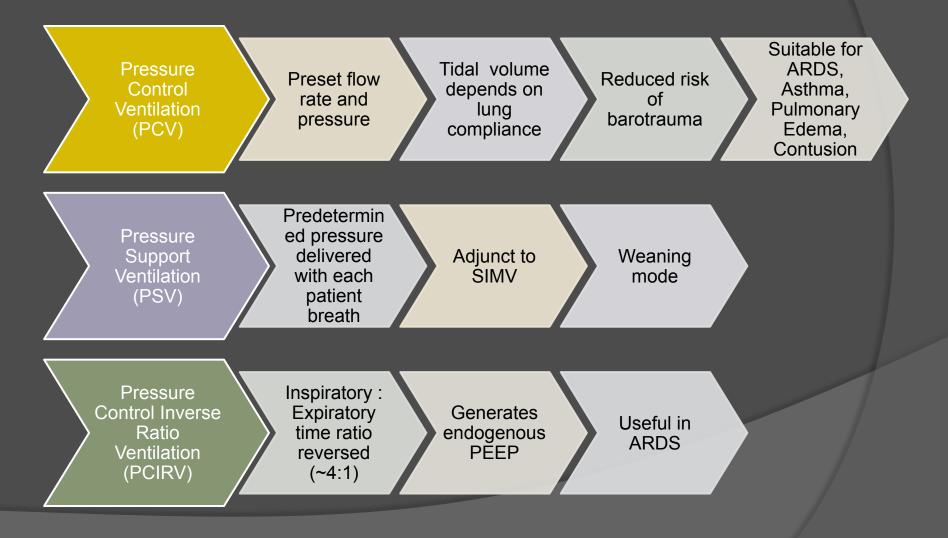

MECHANICAL VENTILATION

- Indications: same as those for intubation
- Appropriate mode
 - Awake patients → Synchronized Intermittent Mandatory Ventilation (SIMV) with pressure support
 - Perioperative management (extubation planned in 1- 2 days) → Assist Control Ventilation (ACV)
 - COPD, ARDS etc → Pressure Control Ventilation (PCV)

MECHANICAL VENTILATION


- Settings
- If pH< 7.3 and $PaCO_2 > 50 \text{ mm Hg}$
 - RR 16 24/min
 - Tidal Volume 10 -15 ml /kg
- As the parameters normalize
 - RR to be reduced towards 10 -12 /min and tidal volume 10 ml/kg

MECHANICAL VENTILATION



MECHANICAL VENTILATION Modes

Volume Controlled (Preset Tidal Volume And Rate)

MECHANICAL VENTILATION Modes

MECHANICAL VENTILATION Modes

High Frequency Ventilation

Allows adequate ventilation at lower peak airway pressures

Useful in

- ARDS
- Barotrauma
- Bronchopleural fistula

Continuous Positive Airway Pressure (CPAP)

Constant positive pressure is applied throughout the respiratory cycle to keep alveoli open in a spontaneously breathing patient

Used for wean without having to remove the ventilator and having to connect to additional equipment like T piece.

MECHANICAL VENTILATION Weaning

Preparation

• Lowest levels of FiO_2 and PEEP to maintain a PaO_2 of 80 – 100 mm Hg

Candidates

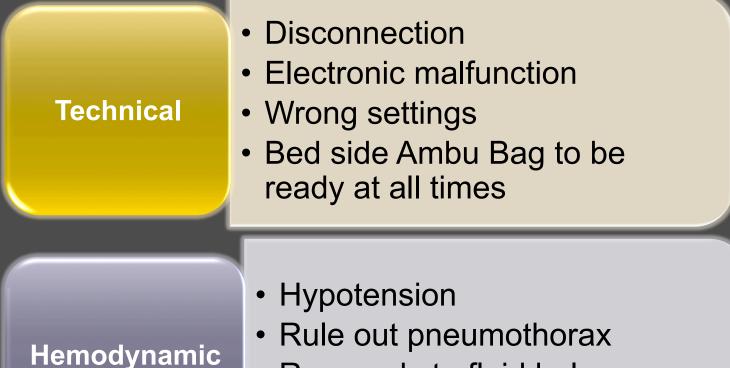
- Hemodynamically stable
- Adequate respiratory drive (preferably alert)
- $PaO_2 \ge 60 \text{ mm Hg at } FiO_2 \le 40\%$

Weaning parameters

- Minute ventilation < 10L/min
- Vital Capacity > 10ml/kg
- Vd/Vt < 0.6 (PaCO₂ PECO₂)/PaCO₂

MECHANICAL VENTILATION Weaning – Methods

T – Piece


- Patient solely responsible for initiation and work of breathing
- Suitable for patients on ventilation for < 3-7 days
- ABG 30 mins and 2 hours after trial
 - pH \geq 7.3 and increase in Pa CO₂ not > 5 mm Hg \rightarrow extubate

CPAP

SIMV

 Reduce rate @ 2 breaths /min every 2 hrs up to 4 breaths /min → T piece

PSV

- Responds to fluid bolus
- Reduce PEEP/Tidal Volume

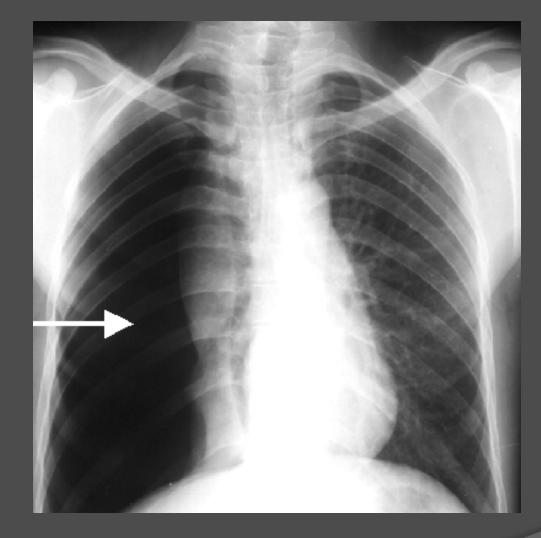
Ventilator Associated Pneumonia (VAP)

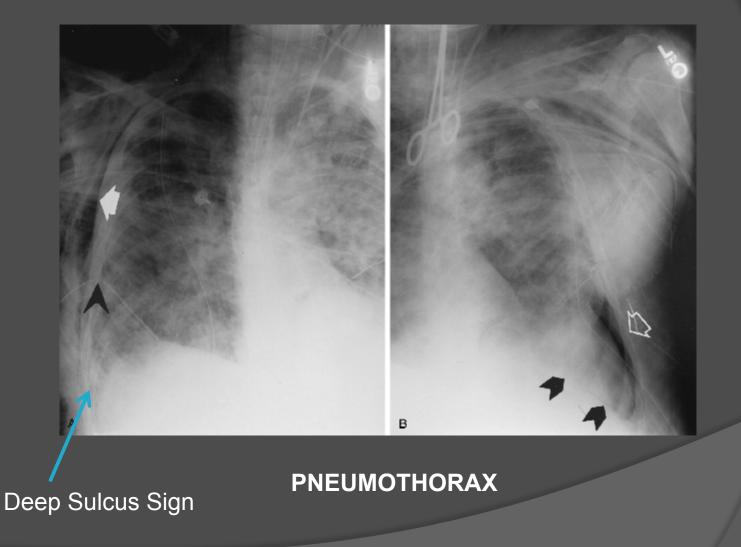
- 86% of all nosocomial pneumonias
- Upto 50% mortality
- Acinetobacter the commonest organism
- **Suspicion** : a new onset (<48hrs) or progressive radiographic infiltrate with at least 2 of :
 - Temp >38° C or < 36° C
 - TLC > 10000 or <5000/ml
 - Purulent tracheal secretions
 - Gas exchange degradation

Ventilator Associated Pneumonia (VAP)

- Culture : Endotrachaeal Aspirate, BAL
- Management : Broad spectrum empirical Antibiotic (eg quinolones) with an anti pseudomonal drug(ceftazidime, imipenem, piperacillin)
- Specific antibiotic after culture reports
- Supportive care

Koenig SM, Truwit JD.. Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev. 2006;19:637–57


VAP


Barotrauma : Associated with positive pressure ventilation. Incidence 5 -15%

Pneumothorax

- Dyspnea, sharp pleuritic chest pain
- Tachypnea, tachycardia
- Contralateral tracheal deviation , hyper resonant percussion
- Diagnosis : chest radiograph
 - Erect film ideal
 - Deep sulcus sign on supine film
 - Lateral decubitus film for smaller quantities of air

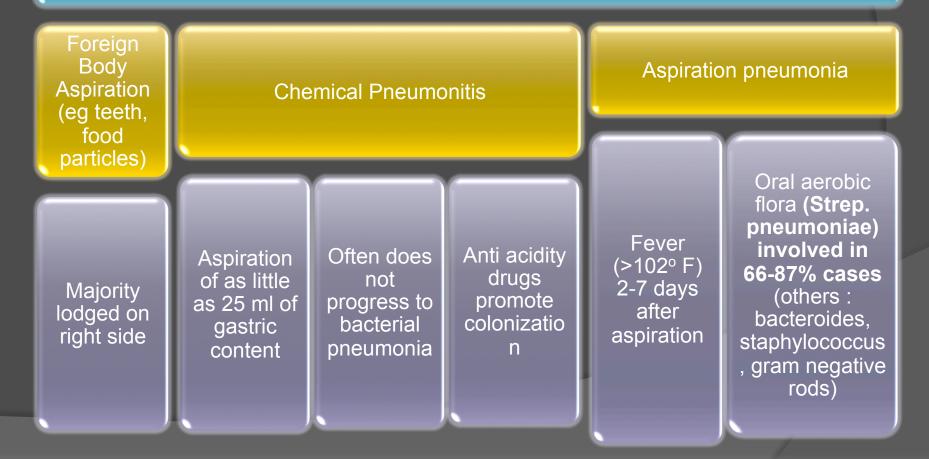
PNEUMOTHORAX

- Pneumothorax
 - Treatment
 - Emergent : 14 16 Gauge i/v needle in 2nd 3rd
 IC space (midclavicular line)
 - Definitive : Tube Thoracostomy
 - To be kept in place till < 100 ml fluid drains /day
 - No air leak
 - Lung fully expanded
- Subcutaneous and Mediastinal Emphysema are other manifestations of barotrauma

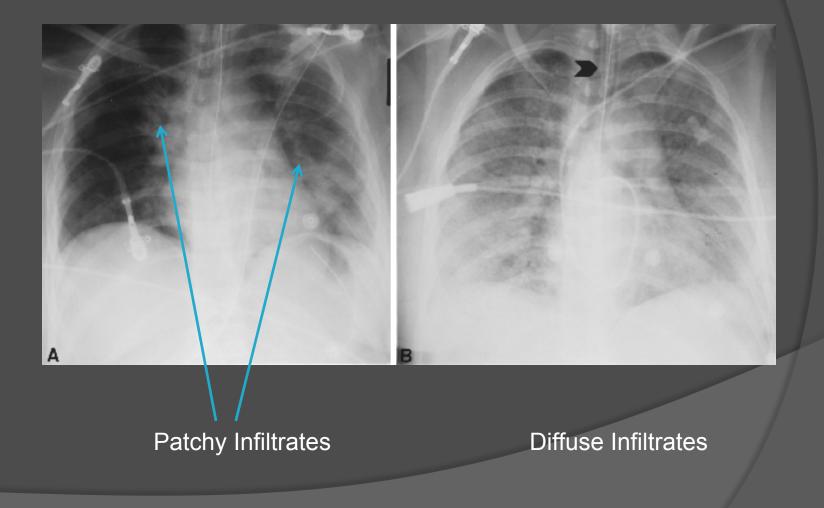
COMPLICATIONS Respiratory Failure

Primary Ventilation Failure

- pH < 7.3
- PaCO₂ > 50 mm Hg
- Alveolar Arterial PO₂ gradient [150 (PaCO₂/0.8)- PaO₂] is *normal*
 - Central Causes: Diminished
 Respiratory Drive
 - Altered consciousness
- Neuromuscular Weakness
 - Fatigue
 - Shortness of breath , tachypnea
 obtundation


COMPLICATIONS Respiratory Failure

Primary Oxygenation Failure:


- Pneumonia
- Pulmonary Edema
- Aspiration
- Pulmonary embolism
- Lung contusion
- Intact respiratory drive
 - Paradoxical thoraco-abdominal respiration
- Respiratory alkalosis
 - pH > 7.45
 - Decreased PaCO₂
 - PaO₂

COMPLICATIONS Aspiration

Aspiration occurs in 23 – 33% neurosurgical patients

Aspiration Pneumonitis

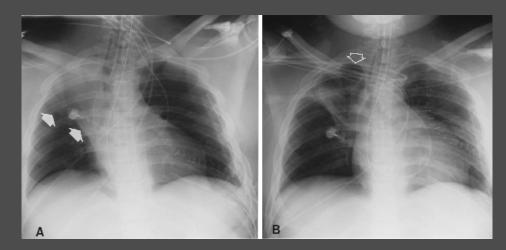
COMPLICATIONS Aspiration

Treatment

- Bronchoscopy for foreign body
- Empirical antibiotics
 - Penicillin group drugs for community acquired aspiration pneumonia
 - Piperacillin + aminoglycoside for nosocomial aspiration
- Change as per culture reports
- Empirical corticosteroids and PEEP may not be beneficial

COMPLICATIONS Atelectasis

Microatelectasis


- May not be apparent on Xray
- Intrapulmonary shunt \rightarrow hypoxemia

Lobar /Panlobar Atelectasis

- Mucus plug
- Foreign body
- Intubation of main bronchus
- Collapse

Parenchymal density on X ray; rib crowding

COMPLICATIONS Atelectasis

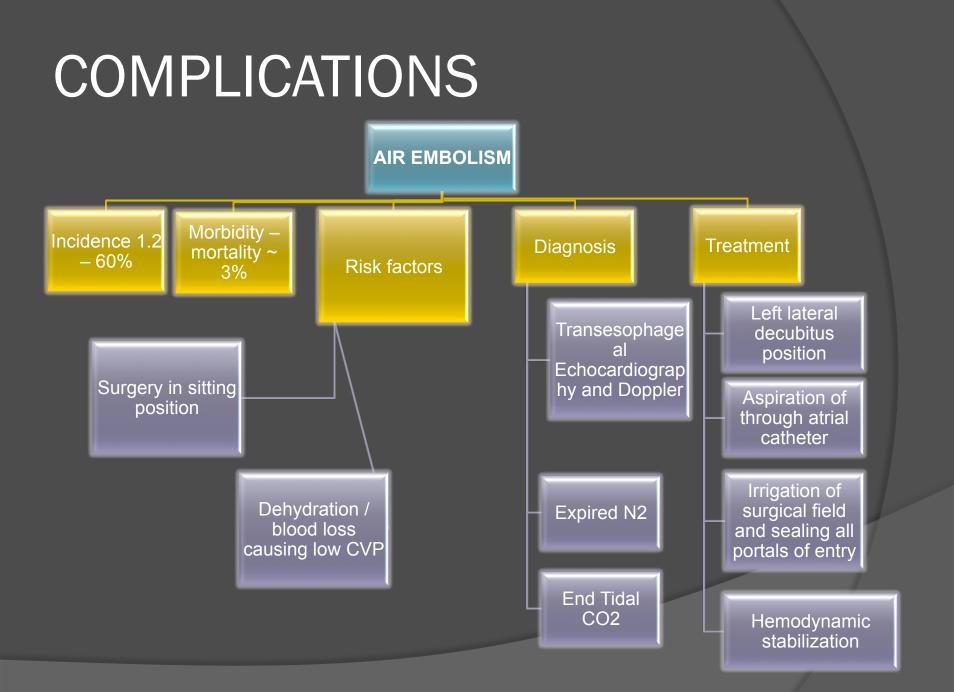
COMPLICATIONS Atelectasis – Treatment

mage is a technique .
e airway so that it may be c
Tapping is performed in certa with the patient in different pos
Kak

Chest Physiotherapy

- Shifting position for gravity drainage
- Chest percussion
- Endotracheal / Nasotracheal suction

Instillation of saline / acetylcysteine Tube adjustment Ventilator settings


Fibreoptic Bronchos copy

- Clinically:
 - Dyspnea
 - Cough
 - Bilateral crackles
 - Occasionally wheeze
- ABG
 - ↓ed PaO₂
 - Widened Alveolar- Arterial PO₂ Gradient
- Cardiogenic
- Non Cardiogenic

- Cardiogenic
 - Elevated Pulmonary Artery Wedge Pressure (> 18 mm Hg)
 - Diminished cardiac output
 - Jugular venous distension
 - Increased systemic vascular resistance
- Treatment
 - Pre load reduction
 - Loop diuretics (i/v furosemide 20 80 mg 6 hrly)
 - Morphine
 - Inotropes
 - Ventilation with PEEP as needed

- Non-Cardiogenic
- ARDS
 - Pulmonary artery wedge pressure < 18 mmHg
 - No jugular venous distension
 - Mortality 60 70%
 - Treatment
 - Oxygenation mechanical ventilation with PEEP
 - Pressure Control Inverse Ratio Ventilation
 - High Frequency jet ventilation

- Non-Cardiogenic
- Neurogenic Pulmonary Edema
 - Incidence 11 -71%
 - SAH, Head Injury
 - Mechanism :
 - Increased Sympathetic Discharge
 - Inflammatory mediators
 - Treatment : Supportive

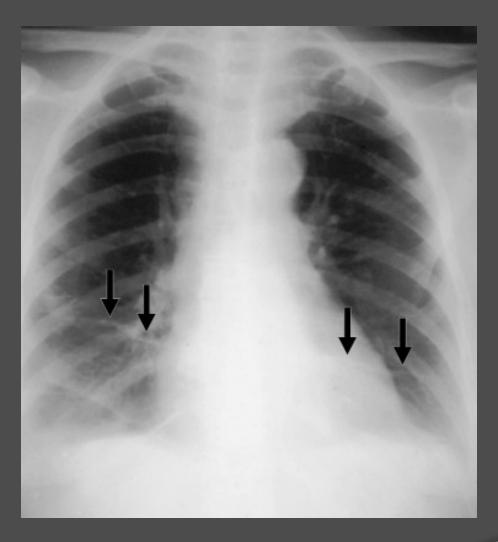
COMPLICATIONS

Venous Thrombosis	 Incidence of DVT 29 – 43% Thrombo Embolism occurs in 15% cases
Risk factors	 Prolonged surgery and immobilization, Previous DVT Malignancy Direct lower extremity trauma Limb weakness Advanced age Hypercoagulability
Clinically	 Ankle, calf swelling, calf tenderness, Homan's sign
Diagnosis	 Doppler ultrasound (sensitivity 90%)

COMPLICATIONS

Venous Thrombosis

- Treatment :
- Full anticoagulation with heparin (target partial thromboplastin time of 45 to 60 seconds)
- Acceptable 1-3 weeks after surgery
- Followed by Warfarin (target international normalized ratio of 2)
- To be continued for 6 weeks to 3 months in uncomplicated cases


COMPLICATIONS Pulmonary Embolism

Pulmonary Embolism: presentation

- Tachypnea
- Pleuritic chest pain
- Dyspnea
- Cough
- Jugular venous distension
- Fever
- Altered sensorium

Investigations

- Po₂ of < 80 mm Hg (85%)
- Right axis deviation on ECG
- Infiltrates on Chest X-ray
- Spiral CT (preferred)
- Angiography (Gold Standard)
- Radio nucleotide perfusion scan (sensitive)

Pulmonary Thromboembolism

Bilateral pleural effusions with long linear bands of atelectasis (Fleischner lines)

COMPLICATIONS Pulmonary Embolism

Treatment

- Ventilatory support
- Vasopressors
- Full anticoagulation with heparin infusion (target partial thromboplastin time of 45 to 60 seconds) *despite risk of intracranial bleed.*
- *i/v* Heparin 5000-10000 IU bolus followed by 1000 IU/hr infusion
- Pulmonary embolectomy (last resort)

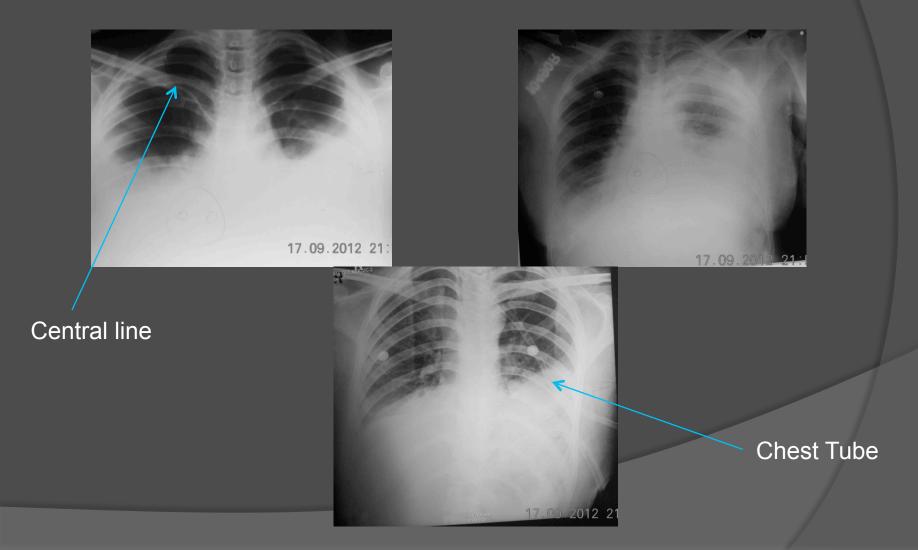
COMPLICATIONS Pulmonary Embolism

• DVT prophylaxis

- Graded Compression Stockings; Intermittent Pneumatic Compression Devices
- Low dose heparin (5000 IU twice daily)
- Low Molecular Weight Heparin
- IVC Filter
 - Greenfield filter

COMPLICATIONS Central Venous Access

Reported Pulmonary Complications


Catheter malposition (3.9%)

Pneumothorax (4.3%)

Catheter associated pleural/pericardial effusion (few case reports) (0.2%)

Vandoni RE, et al .Randomised comparison of complications from three different permanent central venous access systems. Swiss Med Wkly. 2009 May 30;139(21-22):313-6 Walshe C, et al . Vascular erosion by central venous catheters used for total parenteral nutrition. Intensive Care Med. 2007 Mar; 33(3):534-

COMPLICATIONS Central Venous Access

CONCLUSION

- Pulmonary complications are one of the most common causes of morbidity and mortality in neurosurgical patients
- Many conditions require strong index of suspicion for timely diagnosis and treatment
- Serial Chest X rays and ABG are indispensable
- Timely intervention may help avert morbidity and mortality in many cases.